SELECTIVE 'H-''C CORRELATION BY LOW POWER SINGLE FREQUENCY OFF-RESONANCE DECOUPLING ASSISTED BY EXHAUSTIVE SIMULATION TECHNIQUES

J. C. BELOEIL

Laboratoire de Synthèse Organique, Ecole Polytechnique, 91128 Palaiseau Cedex France

and

C. LE COCQ, V. MICHON and J. Y. LALLEMAND* Laboratoire de Chimie de l'Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

(Received in France 21 October 1980)

Abstract—Selectivity in the ¹H-¹³C correlation for assignments of ¹³C spectra is enhanced by recording single frequency off-resonance ¹³C NMR spectra with low decoupling field strength ($\leq 2J_0$), distortion of signal patterns is avoided by submitting the spin system to a previous noise broad band decoupling. Correlation is obtained by comparison of observed and simulated 2-D spectra (δ ¹³C vs decoupler frequency) joined to fitting of the curve $J_R = f$ (decoupler frequency) with the equation of Freeman and Anderson.¹

Single Frequency Off-Resonance Decoupling (SFORD) is one of the most widely used techniques for the assignment of ¹³C signals. Usually, its application is restricted to the separation of quaternary carbons, CH, CH₂ and CH₃ groups according to their signal multiplicity. Actually the off-resonance spectrum contains more precise information, through the measure of the "residual splitting" J_R which is given by the equation of Anderson and Freeman:¹

$$J_{\mathbf{R}} = \sqrt{\left(\left(\Delta f - \frac{1}{2}J_{0}\right)^{2} + D^{2}\right) - \sqrt{\left(\left(\Delta f + \frac{1}{2}J_{0}\right)^{2} + D^{2}\right)}$$
(1)

where Δf is the difference between the proton chemical shift f_1 and the decoupler frequency f_2 , J_0 is the heteronuclear one bond coupling constant ($^{13}C^{-1}H$) and D is the decoupling field strength (D = πH_2).

Provided that J_0 and D are known and J_R is measured, Δf and f_1 may be calculated. Then the comparison of f_1 with ¹H chemical shifts furnishes a ¹³C-¹H correlation. Generaly the ¹H spectrum is much easily assigned, and ¹³C assignments are deduced from it, but the reverse may also be useful.

According to this scheme, several methods have been described²⁻⁶ which often use a simplified relationship between J_R and Δf :^{7.8}

$$J_{R} = \frac{J_{o}}{D}\Delta f$$
 (2)

$$\Delta f = \frac{DJ_R}{\sqrt{(J_0^2 - J_R^2)}}.$$
 (3)

Recently we reported briefly in a preliminary communication,⁹ the assignment of the ¹³C spectrum of the ionophorous antibiotic lonomycin (Fig. 5). We noticed that the methods already described were not well suited to the study of large molecules because of the poor selectivity in the determination of ¹H chemical shifts.

We report in this paper, a technique of correlation ${}^{13}C \neq {}^{14}H$, specially effective in the field of natural products. The assignment of the ${}^{13}C$ spectrum of the

antibiotic lonomycin is described and used to illustrate the method.

RESULTS

Low Power Single Frequency Off Resonance Decoupling (LPSFORD)

From Fig 1 which displays the dependance of J_R versus decoupler offset at different decoupling powers, it can be seen that increased sensitivity of J_R to the variation of Δf , and therefore selectivity enhancement in ${}^1\text{H} \neq {}^{13}\text{C}$ correlation is obtained for low Δf and decoupling strength (D) values. For example, when $\Delta f \simeq J_0$, if D = 2 J₀ is used instead of 4 J₀, $\Delta J_r/\Delta f$ is multiplied by 2.5. This advantage is rapidly limited by the apparition of anomalous lines' intensities, higher multiplicities (up to 16 lines for a CH₃ group), and even transitions in emission¹⁰⁻¹² (Fig. 2a). These perturbations could make the determination of the residual splitting J_R impossible at low decoupling strengths.

According to Bain *et al.*,¹⁰ part of this phenomena may be explained by population effects coming from two factors, the tilting of the effective field in the rotating frame and the relaxation effect.

As suggested by Freeman *et al.*,¹³ we submitted the spin system to an incoherent proton irradiation which completely modifies the spin's populations just before excitation pulse, acquisition being recorded under low power single frequency off-resonance decoupling (LPSFORD). Comparison of spectra recorded in LPSFORD conditions, with and without preliminary noise broad band decoupling (e.g. Figs. 2a and 2b) shows that the "preparation" of the spin system restores the usual off-resonance pattern. The reduced splitting J_R may be easily measured, giving a better precision of the determination of the related proton chemical shifts. According to this technique, we have recorded several LPSFORD spectra ($J_0 \le D \le 2J_0$), no significant distortions of the signal patterns have been observed (e.g. Fig. 3a).

Determination of the connected ¹H chemical shifts f_1

From equation[1], it is theoretically possible to obtain Δf and f_1 by collecting J_R from only one or two

Fig. 1. Plot of $J_R = \sqrt{((\Delta f - (1/2)J_0)^2 + D^2)} - \sqrt{((\Delta f + (1/2)J_0)^2 + D^2)} J_0 = 125 \text{ Hz}; D = \#B_2.$

LPSFORD spectra (with different decoupling frequencies), provided that D and/or J₀ are known.⁶ In fact, this scheme is limited to the study of small molecules because identification of doublet, triplet or quadruplet patterns in ¹³C spectra of large molecules remains difficult.

Practically, all J_R values cannot be extracted from only

Fig. 2. LPSFORD ($D = 1J_0$, $\Delta f = 50$ Hz) ¹³C NMR spectra of I¹³CH₃. a, without preparation of the spin system; b, with previous noise broad band decoupling.

one or two spectra. Moreover some regions of the ¹H spectra are often very crowded, thus it is necessary to obtain a high selectivity (≤ 10 Hz at 250 MHz) in the computation of the ¹H chemical shifts.

We describe below a six stages method which overcomes these difficulties:

(1) A set of LPSFORD spectra $(D \le 2J_0)$, with incremental variation of the decoupling frequency f_2 is recorded. The observation of the resulting 2-D spectrum (Figs. 7 and 8) allows to follow a signal pattern from one spectrum to another.

(2) The decoupler field strength $D = \#H_2$ is computed by fitting the curve $J_R = f(f_2)$ with equation[1]. This operation is made on the TMS signal for which J_0 and f_1 are known.

(3) A very rough assignment of the ¹³C spectrum is done, partly by comparison with known parent compounds, to initialize the process.

(4) For a given value of f_2 , assuming in a first approximation that all ¹³C-¹H coupling constants are equal to 125 Hz for sp3 carbons, the LPSFORD spectrum is simulated (first order only, see below) and compared with the experimental one (Fig. 3). Wrong assignments can be detected and corrected (Fig. 3). The process is repeated until good agreement between observed and calculated spectra is obtained. Then the decoupler frequency f_2 is changed, a new simulation is made, attributions are checked and modified if necessary.

To keep this stage quick and useful we had to develop a simplified conversational simulation program, all previously existing sophisticated programs which need time consuming matrice's inversion had to be discarded.

This program generates singlets, doublets and quadruplets with adjustable line width and only takes into account the one bond heteronuclear coupling constants (the simulation program is written in FOCAL and was developed on a NICOLET 1180 computer; a copy can be sent upon request). Second order interactions and secondary effects like NOE are neglected. In the case of CH₂ groups the two protons are considered to be non-

Fig. 3. (a). $8 \approx 14$ ppm region of the observed LPSFORD ¹³C NMR spectrum of lonomycin (D = 243 Hz, $f_2 \approx 342$ Hz); (b) Simulated spectrum using Table 1 values; (c). Simulated spectrum using Table 1 values, except that assignments of C₃₉ and C₄₀ are exchanged.

Fig. 4. 2-D representation (δ^{-13} C vs f₂) of CH₂ signal patterns with various protons chemical shift differences $(f_1 - f'_1)$ (D = 250 Hz, J₀ = 125 Hz).

equivalent and the corresponding independant residual coupling constants are computed (Fig. 4).

On the practical example reported on Fig. 3 it can be seen that the simplified simulated spectrum is highly sufficient to identify the signal patterns, for example the inversion of the assignments of the carbon 39 and 40 of lonomycin is easily detected.

We must underline that the computational time needed for the simulation of a twenty carbons SFORD spectrum is in the order of a few minutes. At this stage the connection scheme of even signals (CH, CH₃ groups) is well established. On the other hand the identification of the CH₂ groups, by comparison of observed and simulated spectra is difficult and time consuming because a CH₂ which bears non-equivalent protons give much complicated signal patterns (Fig. 4). Moreover the assignments of CH_2 signals in the ¹H spectrum are sometimes less accurate than those of CH and CH₃, or even impossible.

(5) Most signal patterns are now assigned. Thus it is possible to recognize the unidentified signals and to extract the curve $J_R = f(f_2)$ for each of it. This curve is fitted with the equation [1] by a classical least square method,¹⁴ the values of the proton chemical shifts f_1 and ¹³C-¹H coupling constants J_0 are obtained. It must be noticed that the precise J_0 's values of previously identified signals (Stage 4) can be obtained in the same manner.

(6) A very effective verification of the total assignment can be made if the observed 2-D spectrum ($\delta^{13}C$ vs f_2) is compared with the simulated one which was computed from final f_1 's values and from J₀'s values calculated at stage 5 (see Figs. 7 and 8). Application: assignment of the ¹³C NMR spectrum of the sodium salt of the antibiotic lonomycin

Lonomycin C₄₄H₇₆O₁₄ (Fig. 5) is an ionophorous antibiotic produced from *Streptomyces hygroscopicus*,¹⁵ its ¹H NMR spectrum (Fig. 6a) has been well studied. ¹⁶ From the classical ¹³C NMR "SFORD" spectrum, 6 singlets, 18 doublets, 5 triplets and 15 quadruplets were identified. The carbonyl carbon C - 1 was immediately attributed to the signal at 180.1 ppm. Obviously decoupling methods are ineffective for the assignment of non-substituted carbons and quaternary methyls. Therefore C - 3, C - 29, C - 13, C - 16, C - 20, C - 30, C - 34 and C - 35 were attributed by comparison with spectra of similar products.¹⁷ The four quadruplets in the 54 = 66 ppm region correspond to the methoxy groups, they couldn't be individually assigned but selective decoupling could give the ¹H-¹³C correlation.

The $3 \approx 5$ ppm region of the ¹H NMR spectrum was well resolved. It was easy to assign C - 27, C - 11, C - 5, C - 17, C - 7, C - 25, C - 24, C - 23, C - 21, C - 9, C - 2, C - 28, C - 22 and C - 6 by heteronuclear selective decoupling. The region A (8 \approx 14 ppm) and B (20 \approx 40 ppm) of the ¹³C NMR spectra (Fig. 6b) remained unassigned. The related regions of the ¹H NMR spectrum were very badly resolved, therefore the selective decoupling techniques were useless. We recorded a set of "LPSFORD" spectra ($D \approx 2J_0$, decoupler frequency step = 25 Hz), with "preparation" of the spin system by broad band decoupling (Figs. 7a and 8a). A rough assignment was done, partly by comparison with known ionophorous antibiotics.¹⁷ Then the method described above was entirely applied (Figs. 3, 7 and 8). The results are reported in Table 1. The selectivity is better than 10 Hz.

Final observed and simulated 2-D spectra of the regions $8 \approx 14$ ppm and $20 \approx 40$ ppm are represented in Figs. 7 and 8.

It can be seen in Figs 8a and 8b that the simulation of CH₂ signal patterns is very effective (C - 12 for example). Protons signals of C - 14, C - 15, and C - 19 (CH₂ groups) are unidentified in the ¹H spectrum, C - 15 and C - 19 which have very similar environment are attributed to two very closed signals in the ¹³C spectrum at 33.7 and 33.4 ppm. C - 14 is then assigned by default; the corresponding ¹H chemical shifts could be computed (Table 1) and thus predicted. This operation is impossible for C - 15 and C - 19, their ¹³C signal patterns are too overlapped, it is impossible to collect J_R values.

The high selectivity obtained by this technique forced us to modify three of our previous assignments⁹ (C - 12, C - 14 and C - 18), and to reverse the C - 39 and C - 40

Fig. 6. (a). ¹H NMR spectrum of lonomycin (CDCl₃, 250 MHz); (b). Noise decoupled ¹³C NMR spectrum of lonomycin (CDCl₃, 62.9 MHz).

N° experimental simulation diff. 4 457 460 3 6 530 533 3 8 385 390 5 10 417 423 6 18 395 389 6 18 455 458 3 12 427 426 1 497 499 2 1 14 7 426 1 7 7426 1 1 14 7 426 1 7 7499 2 2 14 7 497 499 22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 239 1 34	carbon	¹ H chemical shifts in Hz from TMS (at 250 MHz)						
445746036530533383853905104174236183953896184554583124274261497499214not identified397not identified56222607614726417303323403127427622247254733212342872993540540636232239737200207738190402652727	N*	experimental	simulation	diff.				
65305333838539051041742361839538964554583124274261497499214not identified397not identified56222607614726417409830332340312742762224725433212221934287354054063623223973720020020739240265272402652727	4	457	460	3				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	530	533	3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	385	390	5				
18 395 389 6 455 458 3 12 427 426 1 427 426 1 497 499 2 not identified 397 not identified 562 22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	10	417	423	6				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	395	389	6				
427 426 1 497 499 2 not identified 397 not identified 562 22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7		455	458	3				
12 497 499 2 14 not identified 397 397 14 not identified 562 562 22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	12	427	426	1				
not identified 397 not identified 562 22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7		497	499	2				
14 not identified 562 22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 i 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	14	not identified	397					
22 607 614 7 26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7		not identified	562					
26 417 409 8 30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	22	607	614	7				
30 332 340 8 31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	26	417	409	8				
31 274 276 2 32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	30	332	340	8				
32 247 254 7 33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	31	274	276	Z				
33 212 221 9 34 287 299 12 35 405 406 1 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	32	247	254	7				
34 287 299 12 35 405 406 i 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	33	212	221	9				
35 405 406 i 36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	34	287	299	12				
36 232 239 7 37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	35	405	406	1				
37 200 207 7 38 190 197 7 39 240 245 5 40 265 272 7	36	232	239	7				
38 190 197 7 39 240 245 5 40 265 272 7	37	200	207	7				
39 240 245 5 40 265 272 7	38	190	197	7				
40 265 272 7	39	240	245	5				
	40	265	272	7				

Table 1. Comparison of the ¹H chemical shifts (250 MHz) obtained from experimental spectrum and from computation-simulation

Fig. 7. (a). $8 \approx 14$ ppm region of the 2-D "LPSFORD." ¹³C NMR spectrum of lonomycin (¹³C chemical shift vs decoupling frequency), (b). Simulated spectrum.

Fig. 8 (a). $20 \simeq 40$ ppm region of the 2-D "LPSFORD" ¹³C NMR spectrum of lonomycin. (b). Simulated spectrum (except for C₁₅ and C₁₉ signals which are not represented).

Table 2. Chemical shifts of the ¹³C and related ¹H of the lonomycin sodium salt (in ppm from TMS). Attributions with * and + can be respectively reversed

Carbon N ^e	¹³ C chemi- cal shifts in ppm from TMS	H chemic in ppm, f	al shifts from TMS		Carbon N [®]	¹³ C chemi- cal shifts in ppm from TMS	¹ H chemical shifts in ppm from TMS
1	180.1				23	79.9	4.24
2	45.4	2.54			24	79.3	4.12
3	99.6				25	73.2	3.90
4	34.9	1.83	1		26	37.4	1.67
5	81.6	3.38			27	84.1	3.01
6	30.7	2.12			28	46.2	1.44
7	70.3	3.75			29	98.0	
8.	37.3	1.54			30	26.2	1.33
9	62.8	4.43			31	12.0	1.10
10	33.4	1.67			32	13.5	0.99
11	81.6	3.20			33	8.7	0.85
12	38.9	1.99	1.71		34	21.9	1.15
13	106.3				35	28.8	1.62
14	30.0				36	11.7	0.93
15	33.7 *				37	9.8	0.80
16	84.1 *		1		38	3.7	0.76
17	80.9	3.61			39	10.8	0.96
18	25.5	1.58	1.82		40	11.3	1.06
19	33.4				MeO	59.3	3.49
20	85.4 *				MeO	58.1	3.46
21	84.4	4.28	1		MeO	\$6.9	3.33
22	35.7	2.43	ļ		MeO	55.6	3.29
	-						

attributions of Seto *et al.*¹⁸ The complete assignment of the ¹³C NMR spectrum of lonomycin is reported in Table 2.

CONCLUSION

The preparation of the spin system, by high power noise decoupling, before the LPSFORD experiment allows the use of low decoupling power which give its high sensitivity to the described method. The comparison of the observed and simulated 2-D spectra (δ^{13} C versus f₂); joined to the fit of the curve J_R = f (f₂) with equation[1] give it the self-consistency. However it remains a routine technique because of the very short computational times needed by its conversational program.

This method should be a highly attractive counterpart to the well known but dangerous empirical chemical shift correlation between model compounds.

EXPERIMENTAL

The spectra at 18° in CDCl₃ were obtained on a 250 MHz CAMECA apparatus, equipped with a NICOLET 1180 computer. Modification of the proton decoupler was provided in the following way: decoupler power supply voltage was switched between various levels adjusted by potentiometers. Pulses originally used for field gradient spoiling were used to select the various voltage levels. The obtained switching time was $\approx 50 \ \mu s$ and dynamic \approx 40 dB.

REFERENCES

- ¹W. A. Anderson and R. Freeman, J. Chem. Phys. 37, 85 (1962).
- ²R. Freeman and H. D. W. Hill, *Ibid.* 54, 3367 (1971).
- ³B. Birdsall, N. J. M. Birdsall and J. Feeney, J. Chem. Soc. Chem. Comm. 316 (1972).
- ⁴M. Tanabe, T. Hamasaki, D. Thomas and Le Roy Johnson, J. Am. Chem. Soc. 93, 273 (1971).
- ⁵P. H. McCabe and C. R. Nelson, J. Magn. Res. 22, 183 (1976).
- ⁶J. C. McDonald and M. Mazurek, *Ibid.* 28, 181 (1977).
- ⁷R. R. Ernst, J. Chem. Phys. 45, 3845 (1966).
- ⁸K. G. R. Pachler, J. Magn. Res. 7, 442 (1972).
- ⁹J. Y. Lallemand, C. Le Cocq, V. Michon, C. Derouet and R. C. Rao, *Comptes Rendus Acad. Sci. C.* 288, 383 (1979).
- ¹⁰A. D. Bain and R. M. Lynden-Bell, J. Magn. Res. 25, 315 (1977).
- ¹¹J. C. McDonald and M. Mazurek, *Ibid.* 38, 107 (1980).
- ¹²J. C. McDonald and M. Mazurek, Ibid. 19, 51 (1975).
- ¹³R. Freeman, J. B. Grutzner, G. Morris and D. L. Turner, J. Am. Chem. Soc., 100, 5637 (1978).
- ¹⁴W. E. Wentworth, J. Chem. Ed. 42, 96 (1965).
- ¹⁵S. Omura, M. Shibata, S. Machida, J. Sawada and N. Otake, J. Antibiotics 29, 15 (1976).
- ¹⁶M. J. O. Anteunis and N. A. Rodios, Bull. Soc. Chim. Belg. 87, 447 (1978).
- ¹⁷H. Seto, K. Mizoue, H. Nakayama, K. Furihata, N. Otake, and H. Yonehara, J. Antibiotics 32, 239 (1979).
- ¹⁸H. Seto, K. Mizoue, N. Otake, M. Yamagishi, T. Mizutani, H. Hara and S. Omura, *Ibid.* 31, 929 (1978).